Human endogenous retroviruses (HERVs) are ancient, currently inactive, and non-infectious due to recombination, deletions, and mutations in the host genome. However, HERV-derived elements are involved in physiological phenomena including inflammatory response. In recent studies, HERV-derived elements were involved directly in various inflammatory diseases including autoimmune diseases such as rheumatoid arthritis (RA), multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Sjogren’s syndrome. Regarding the involvement of HERV-derived elements in inflammation, two possible mechanisms have been proposed. First, HERV-derived elements cause nonspecific innate immune processes. Second, HERV-derived RNA or proteins might stimulate selective signaling mechanisms. However, it is unknown how silent HERV elements are activated in the inflammatory response and what factors and signaling mechanisms are involved with HERV-derived elements. In this review, we introduce HERV-related autoimmune diseases and propose the possible action mechanisms of HERV-derived elements in the inflammatory response at the molecular level.
Citations
Objectives, recent epidemiologic studies in humans suggest an increased prevalence of thyroiditis associated with the excessive administration of iodine. More than three times of recommended daily intake of iodine was observed among people in North America. These people generally presented higher level of anti-thyroglobulin antibody, anti-thyroperoxidase antibody, serum thyroid-stimulating hormone and exacerbation of lymphocytic infiltration in thyroid, which indicated the overconsumption of iodine could induce hypothyroidism and enhance the autoimmune response. However, the precise mechanism of excessive iodine intake induced autoimmune thyroid disease remains largely unknown.
Over half a century has elapsed since the 1956 identification of thyroglobulin antibodies and the devising of the first experimental model of autoimmune thyroiditis. Since then an incredible amount of experimental work has led to an ever deeper understanding of the nature of thyroid auto-antigens, the main immune mechanisms responsible for Hashimoto's thyroiditis and graves’ disease, their genetics, and therir environmental risk factor. Yet, in the majority of genetically predisposed people the individual trigger of thyroid autoimmunity remains obscure. Similarly, effective prevention strategies still remain to be established and, hopefully, will be the target of future studies.
Citations