Background Colorectal cancer is one of the most common cancers worldwide. Colorectal cancer that has recurred and metastasized to other organs also has a very poor prognosis. According to recent studies, the long interspersed element-1 (LINE-1) retrotransposon open reading frame (ORF) is located in the intron of the c-Met proto-oncogene, which is involved in cancer progression and metastasis, and regulates its expression. However, no study has compared the expression patterns of LINE-1 ORF1 and c-Met, which are closely related to cancer progression and metastasis, and their correlation in primary and recurrent cancers.
Methods In the present study, we compared the expression patterns of LINE-1 ORF1 and c-Met in both primary and recurrent colorectal cancer tissues from 10 patients. Expression patterns and correlations between LINE-1 ORF1 and c-Met proto-oncogene proteins were analyzed by immunofluorescence staining using both LINE-1 ORF1 and c-Met antibodies.
Results The expression patterns of LINE-1 ORF1 and c-Met showed significant individual differences, and the expression of both proteins was correlated in all colorectal cancer patients. However, the expression levels of LINE-1 ORF1 and c-Met were not significantly different between primary and recurrent colorectal cancers.
Conclusions The protein expression levels of LINE-1 ORF1 and c-Met were correlated, but did not change significantly in cases of recurrent colorectal cancer in the same patient.
Citations
Citations to this article as recorded by
Functional Analysis of Membrane-Associated Scaffolding Tight Junction (TJ) Proteins in Tumorigenic Characteristics of B16-F10 Mouse Melanoma Cells Eun-Ji Ko, Do-Ye Kim, Min-Hye Kim, Hyojin An, Jeongtae Kim, Jee-Yeong Jeong, Kyoung Seob Song, Hee-Jae Cha International Journal of Molecular Sciences.2024; 25(2): 833. CrossRef
Background The scuticociliate Miamiensis avidus is a major pathogenic agent that causes significant economic losses in the flounder aquaculture industry. Many different types of drugs are being tested to control this disease, including mebendazole, which is a broad-spectrum antiprotozoal agent. The purpose of this study was to determine whether mebendazole worked in vitro against M. avidus and to explore its mechanism of action.
Methods Transcriptome and gene ontology analyses were conducted to investigate the specifically expressed gene profile. We confirmed the cytotoxic effect of mebendazole against M. avidus when it was applied intermittently for a total of three times. We also identified differentially expressed genes using transcriptome analysis.
Results Most of the upregulated genes were membrane transport-related genes, including Na+/K+-ATPase. Most of the downregulated genes were categorized into three groups: tubulin-related, metabolism-related, and transport-related genes. The expression levels of glucose uptake-related genes decreased due to the inhibition of tubulin polymerization, but this was not statistically significant.
Conclusions Our results demonstrate that intermittent treatment with mebendazole has a significant cytotoxic effect on M. avidus. Furthermore, mebendazole induces downregulation of the tubulin-alpha chain and metabolism-related genes. It is presumed that this leads to a glucose shortage and the death of M. avidus. Transcriptome analysis will provide useful clues for further studies on mebendazole applications for scutica control.
Background The scuticociliate Miamiensis avidus is a highly pathogenic ciliate responsible for serious damage to various organs of aquaculture fish. In particular, the olive flounder aquaculture industry is suffering massive losses due to M. avidus infection. Hydrogen peroxide (H2O2) is one of the most widely used chemicals for scuticociliate treatment. Despite the superior killing effect of H2O2, studies on transcription levels and gene expression changes after H2O2 treatment are limited. We conducted an mRNA transcriptome analysis to compare the expressed gene (DEG) profiles between the ciliate and cyst-like stages of M. avidus after H2O2 treatment.
Methods We applied differentially expressed gene profiling to identify DEGs during the ciliate and cyst-like stages of M. avidus.
Results There were 5,967 DEGs among the 9,075 transcripts identified, and 50 of these DEGs were significantly different (p<0.05). Among these, 21 DEGs were upregulated and 29 were downregulated in the cyst-like stage. The most significantly upregulated genes during the change to the cyst-like stage were cytochrome c oxidase genes. Genes related to the calcium channel were also highly upregulated.
Conclusion The significant upregulation of cytochrome c gene expression and cytosolic calcium ion channel-related gene expression after H2O2 treatment suggests that ciliate mortality occurred through apoptosis. The formation of the cyst-like stage is considered a temporary form during the process of apoptosis. Information on the gene expression profile of M. avidus in response to H2O2 is expected to contribute to the understanding of the mechanism of action of therapeutic agents against this pathogen.